Search results

1 – 10 of 24
Article
Publication date: 23 November 2018

Mahmoud Salari, Emad Hasani Malekshah, Mohammad Reza Sarlak, Masoud Hasani Malekshah and Mohammad Pilfoush

The purpose of this paper is to investigate the three-dimensional natural convection and entropy generation in a cuboid enclosure filled with two immiscible fluids of nanofluid…

Abstract

Purpose

The purpose of this paper is to investigate the three-dimensional natural convection and entropy generation in a cuboid enclosure filled with two immiscible fluids of nanofluid and air.

Design/methodology/approach

One surface of the enclosure is jagged and another one is smooth. The finite volume approach is applied for computation. There are two partially side heaters. Furthermore, the Navier–Stokes equations and entropy generation formulation are solved in the 3D form.

Findings

The effects of different governing parameters, such as the jagged surface (JR=0, 0.02, 0.04, 0.08, 0.12 and 0.16), Rayleigh number (103Ra⩽106) and solid volume fraction of nanofluid (φ=1, 1.5, 2 vol%), on the fluid flow, temperature field, Nusselt number, volumetric entropy generation and Bejan number are presented, comprehensively. The results indicate that the average Nusselt number increases with the increase in the Rayleigh number and solid volume fraction of nanofluid. Moreover, the flow structure is significantly affected by the jagged surface.

Originality/value

The originality of this work is to analyze the natural-convection fluid flow and heat transfer under the influence of jagged surfaces of electrodes in high-current lead–acid batteries.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 December 2017

Mahmoud Salari, Mohammad Mehdi Rashidi, Emad Hasani Malekshah and Masoud Hasani Malekshah

Because the local Re numbers, ratio of inertia to viscous forces, are not same at different regions of the enclosures, the present study aims to deal with the influences of using…

Abstract

Purpose

Because the local Re numbers, ratio of inertia to viscous forces, are not same at different regions of the enclosures, the present study aims to deal with the influences of using the turbulent/transition models on numerical results of the natural convection and flow field within a trapezoidal enclosure.

Design/methodology/approach

The three-dimensional (3D) trapezoidal enclosure with different inclined side walls of 75, 90 and 105 degrees are considered, where the side walls are heated and cooled at Ra = 1.5 × 109 for all cases. The turbulent models of the k-ε-RNG, k- ω-shear-stress transport (SST) and the newly developed transition/turbulent model of Reθ-γ-transition SST are utilized to analyze the fluid flow and heat transfer characteristics within the enclosure and compared their results with validated results.

Findings

Comprehensive comparisons have been carried out for all cases in terms of flow and temperature fields, as well as turbulent quantities, such as turbulent kinetic energy and turbulent viscosity ratio. Furthermore, the velocity and thermal boundary layers have been investigated, and the approximate transition regions for laminar, transitional and turbulent regimes have been determined. Finally, the heat transfer coefficient and skin friction coefficient values have been presented and compared in terms of different turbulent models and configurations. The results show that the transition/turbulence model has better prediction for the flow and heat fields than fully turbulent models, especially for local parameters for all abovementioned governing parameters.

Originality value

The originality of this work is to analyze the 3D turbulent/transitional natural convection with different turbulence/transition models in a trapezoidal enclosure.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 January 2022

Muhammad Aqeel Ashraf, Zhenling Liu, Emad Hasani Malekshah, Lioua Kolsi and Ahmed Kadhim Hussein

The purpose of the present work is to investigate the hydrodynamic and thermal performance of a thermal storage based on the numerical and experimental approaches using the…

Abstract

Purpose

The purpose of the present work is to investigate the hydrodynamic and thermal performance of a thermal storage based on the numerical and experimental approaches using the lattice Boltzmann method and the experimental observation on the thermo-physical properties of the operating fluid.

Design/methodology/approach

For this purpose, the Al2O3 nanoparticle is added to the lubricant with four nanoparticle concentrations, including 0.1, 0.2, 0.4 and 0.6Vol.%. After preparing the nanolubricant samples, the thermal conductivity and dynamic viscosity of nanolubricant are measured using thermal analyzer and viscometer, respectively. Finally, the extracted data are used in the numerical simulation using provided correlations. In the numerical process, the lattice Boltzmann equations based on Bhatnagar–Gross Krook model are used. Also, some modifications are applied to treat with the complex boundary conditions. In addition, the second law analysis is used based on the local and total views.

Findings

Different types of results are reported, including the flow structure, temperature distribution, contours of local entropy generation, value of average Nusselt number, value of entropy generation and value of Bejan number.

Originality/value

The originality of this work is combining a modern numerical methodology with experimental data to simulate the convective flow for an industrial application.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 June 2019

HamidReza KhakRah, Mehdi Mohammaei, Payam Hooshmand, Navid Bagheri and Emad Hasani Malekshah

The nanofluid flow and heat transfer within a heat exchanger, with different thermal arrangements of internal active bodies, are investigated.

Abstract

Purpose

The nanofluid flow and heat transfer within a heat exchanger, with different thermal arrangements of internal active bodies, are investigated.

Design/methodology/approach

For the numerical simulations, the lattice Boltzmann method is utilized. The KKL model is used to predict the dynamic viscosity of CuO-water nanofluid. Furthermore, the Brownian method is taken account using this model. The influence of shapes of nanoparticles on the heat transfer performance is considered.

Findings

The results show that the platelet nanoparticles render higher average Nusselt number showing better heat transfer performance. In order to perform comprehensive analysis, the heatline visualization, local and total entropy generation, local and average Nusselt variation are employed.

Originality/value

The originality of this work is carrying out a comprehensive investigation of nanofluid flow and heat transfer during natural convection using lattice Boltzmann method and employing second law analysis and heatline visualization.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 October 2023

Emad Hasani Malekshah and Lioua Kolsi

The purpose of this study is the hydrothermal analysis of the natural convection phenomenon within the heat exchanger containing nanofluids using the lattice Boltzmann method…

170

Abstract

Purpose

The purpose of this study is the hydrothermal analysis of the natural convection phenomenon within the heat exchanger containing nanofluids using the lattice Boltzmann method (LBM).

Design/methodology/approach

The thermal conductivity as well as dynamic viscosity of the CuO–water nanofluid is estimated using the Koo-Kleinstreuer-Li model. The LBM has been used with unique modifications to make it flexible with the curved boundaries. The local as well as total entropy generation assessment, local Nusselt variation, as well as heatline visualization are used.

Findings

The solid volume percentage of the CuO–water nanofluid, a range of Rayleigh numbers (Ra) and thermal settings of internal operational fins and bodies are all factors that have been thoroughly researched to determine their effects on entropy production, heat transfer efficiency and nanofluid flow.

Originality/value

The originality of this work is using a novel numerical method (i.e. curved boundary LBM) as well as the local/volumetric second law analysis for the application of heat exchanger hydrothermal analysis.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 November 2022

Emad Hasani Malekshah, Ahmed Kadhim Hussein and Lioua Kolsi

The purpose of this study is to address a problem in cooling of an electronic package where the dissipating fins transfer the extra heat energy from the heat source (i.e…

Abstract

Purpose

The purpose of this study is to address a problem in cooling of an electronic package where the dissipating fins transfer the extra heat energy from the heat source (i.e. electronic devices) to the heat sink (i.e. environment). To this end, the convective heat transfer of nanofluid flow over dissipating fins is simulated using a numerical approach, whereas the properties of nanofluid are evaluated based on the experimental measurements and used in the numerical process.

Design/methodology/approach

To simulate the convective flow, the lattice Boltzmann method is used. Also, the curved boundary scheme is used to enhance the capability of lattice Boltzmann method (LBM) in the simulation of natural convection in curved boundaries. In addition, the second law analysis is used based on total and local approaches.

Findings

To improve the cooling performance of fins, a modern technique is used, which is using of nanofluid. For this purpose, samples of SiO2-liquid paraffin with mass fractions of 0.01, 0.05, 0.1, 0.5 and 1 (Wt.%) in a temperature range of 25–60 °C are provided, and the required thermal and physical properties of samples including thermal conductivity and dynamic viscosity are measured during experimental work. The extracted results are used in the numerical simulations using derived correlations.

Originality/value

The originality of the present work is using a modern numerical method in the investigation of an engineering application and combining it with experimental data.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 May 2022

Emad Hasani Malekshah, Wlodzimierz Wróblewski, Krzysztof Bochon and Mirosław Majkut

This paper aims to focus on the cavitating flow around the Clark-Y hydrofoil when the dissolved air is taken into account as the third phase. As the RNG k-epsilon model yields…

Abstract

Purpose

This paper aims to focus on the cavitating flow around the Clark-Y hydrofoil when the dissolved air is taken into account as the third phase. As the RNG k-epsilon model yields poor prediction due to overestimation of viscosity, the modification approaches including density corrected method, filter-based model and filter-based density correction model are used, and the turbulence model is modified. Also, the numerical results are compared with the experimental data.

Design/methodology/approach

The cavitating flow is known as a complex multi-phase flow and appeared in the regions where the local pressure drops under saturation vapor pressure. Many researches have been conducted to analyze this phenomenon because of its significant impact on the erosion, vibration, noise, efficiency of turbomachines, etc.

Findings

The experiments are conducted in a rectangular test section equipped with Clark-Y hydrofoil providing cavity visualization, instantaneous pressure and vibration fluctuations. The simulations are carried out for different cavitation numbers with and without dissolved air. The Fast Fourier Transform, continues wavelet transform and temporal-spatial distribution of gray level are implemented to extract and compare the shedding frequency of experiments and numerical predictions and cavitation evolution. It is concluded that the flow structure, shedding frequency and time-averaged characteristics are highly influenced by the dissolved air. Also, the numerical prediction will be more satisfactory when the modified turbulence models are applied.

Originality/value

To the best of the authors’ knowledge, the originality of this study is the modification of the turbulence model for better prediction of cavitating flow, and the validation of numerical results with corresponding experimental data.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 June 2019

Yongsheng Rao, Zehui Shao, Alireza Rahimi, Abbas Kasaeipoor and Emad Hasani Malekshah

A comprehensive study on the fluid flow and heat transfer in a nanofluid channel is carried out. The configuration of the channel is as like as quarter channel. The channel is…

99

Abstract

Purpose

A comprehensive study on the fluid flow and heat transfer in a nanofluid channel is carried out. The configuration of the channel is as like as quarter channel. The channel is filled with CuO–water nanofluid.

Design/methodology/approach

The Koo–Kleinstreuer–Li model is used to estimate the dynamic viscosity and consider the Brownian motion. On the other hand, the influence of nanoparticles’ shapes on the heat transfer rate is considered in the simulations. The channel is included with the injection pipes which are modeled as active bodies with constant temperature in the 2D simulations.

Findings

The Rayleigh number, nanoparticle concentration and the thermal arrangements of internal pipes are the governing parameters. The hydrothermal aspects of natural convection are investigation using different approaches such as average Nusselt number, total entropy generation, Bejan number, streamlines, temperature fields, local heat transfer irreversibility, local fluid friction irreversibility and heatlines.

Originality/value

The originality of this work is investigation of fluid flow, heat transfer, entropy generation and heatline visualization within a nanofluid-filled channel using a finite volume method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 December 2018

Alireza Rahimi, Pouria Azarikhah, Abbas Kasaeipoor, Emad Hasani Malekshah and Lioua Kolsi

This paper aims to investigate the natural convection fluid flow and heat transfer in a finned/multi-pipe cavity.

Abstract

Purpose

This paper aims to investigate the natural convection fluid flow and heat transfer in a finned/multi-pipe cavity.

Design/methodology/approach

The cavity is filled with the CuO-water nanofluid. The Koo–Kleinstreuer–Li model is used to estimate the dynamic viscosity and consider Brownian motion. On the other hand, the effect of the shapes of nanoparticles on the thermal conductivity and related heat transfer rate is presented.

Findings

In the present investigation, the governing parameters are Rayleigh number, CuO nanoparticle concentration in pure water and the thermal arrangements of internal active fins and solid bodies. Impacts of these parameters on the nanofluid flow, heat transfer rate, total/local entropy generation and heatlines are presented. It is concluded that adding nanoparticles to the pure fluid has a significant positive influence on the heat transfer performance. In addition, the average Nusselt number and total entropy generation have direct a relationship with the Rayleigh number. The thermal arrangement of the internal bodies and fins is a good controlling tool to determine the desired magnitude of heat transfer rate.

Originality/value

The originality of this paper is to use the lattice Boltzmann method in simulating the nanofluid flow and heat transfer within a cavity included with internal active bodies and fins.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 December 2018

Payam Hooshmand, Mohammad Bahrami, Navid Bagheri, Meysam Jamshidian and Emad Hasani Malekshah

This paper aims to investigate the two-dimensional numerical modeling of fluid flow and heat transfer in a fluid channel.

Abstract

Purpose

This paper aims to investigate the two-dimensional numerical modeling of fluid flow and heat transfer in a fluid channel.

Design/methodology/approach

The channel is filled with the CuO-water nanofluid. The KKL model is used to estimate the dynamic viscosity and considering Brownian motion. On the other hand, the influence of CuO nanoparticles’ shapes on the heat transfer rate is taken account in the simulations. The channel is included with several active pipes with hot and cold temperatures. Furthermore, the external curved and sinusoidal walls have cold and hot temperatures, respectively.

Findings

Three different tilt angles are considered with similar boundary and operating conditions. The Rayleigh numbers, solid volume fraction of CuO nanoparticles in the pure water and the tilt angles are the governing parameters. Different cases studies, such as streamlines, heat transfer rate, local and total entropy generation and heatlines, are analysed under influences of these governing parameters.

Originality/value

The originality of this work is investigation of fluid flow, heat transfer and entropy generation within a nanofluid filled channel using FVM.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 24